Coela Can’t!

HUB75 Protogen Kit:

Getting Started

V1.0.2022 — Coela Can’t!

Contents

1 Wiring Your Protogencccccememmsmmenmssnssnmssnssnnsnnnsnnnnnnad

1P RS T=Y ¢ E=To o VATAT T Yo [T =T | - 1 5 o PO 4
1.2 WIiring PiCtUIeS ... 5
1.2.1 Connecting the CoNtroller.........c..eiiiiiiee e 5
1.2.2 Wiring the USB POWEI SOUICEccoiiiiiiiiiiiiee e 6
1.2.3 WiriNg the BOOP SENSONuiiiiiiiiiiiiie et 6
1.2.4 Wiring the MiCrOphoNeccoi oo e 7
1.2.5 Wiring the Control BULIONcoviiiiiiiiiiiiiieiiiieiii e aaeaanana 7
1.2.6 FINAI WIFING e 8
2 HUB75 LED Panels IlIIIlllllllIIllIIlllllllIIllllllllllllllllllllllll9
2.1 General INformation ... ——————— 9
2 smartLED Shield and Breakout llIIllIIllllllllllllllllllllll9
3.1 General INformationcccciiiiiiiiiiner e —————— 9
3.1.1 Easy-to-implement LED GraphiCs ..o 9
B 2 FRAUMES ..o 10

S ABHUBTSE PANEIS ... 11
K B =TT 01 TP PPP P TPPPI 11
3.1.5 TEENSY PIN USAQE ..ceviiiiiii ittt e e et e e e e e e e e e et e e e aeeeeennna 12
3.1.6 DOCUMENTAtION. ... 13
3.2 Controller BreakoUt..........cccccoiiiriinrrsrinsnsssnsees 13
3.2. 1 INformation ... 13
3.2.2 SCheMAtiC .o 13
3.2.3 FUII PCB DESIGN ...ttviiiiieeeiiieiiiet et e ettt e e e e e e e ettt e e e e e e e e e e aaeeeeaaeeeeeenssssnneeas 14
3.2.4 TOp Layer PCB DeSIgN ...ttt 14
3.2.5 Bottom Layer PCB DESIgNuueiiiiiiiiiiiiii ittt e s 15
3.2.6 Top Overlay PCB DeSIgN.....ccooiiiii e 15
3.4 Controller Breakout Schematic Breakdownccccciiiiiiemmmnnssessrs e 16
34116 PiIN Header ... 16
3.4.5 TeeNSY 12C HEAUEIScooieiieeeeeee ettt a e e e e 17
3.4.7 XT30 Power Input and OUIPULcooieiiiei e 17
3.4.8 ANAIOG HEAUETSeeiiiiiiieie e 18
3.4.9 DiIgital HEAUEIS ...ttt 18
B INAICALONS ... s 18
3.6 POWET SETUP.....uei e e e e 19
3.6.1 Powering the Teensy 4.0 for Programmingcccooooiiiiiiiiiiiiiiiiieeeeeeeceeee e, 19
3.6.2 Powering the Controller for Usage........ccooviiiiiiiiiii i, 19
4 sensorSIPeripherals IIIlIIlllIIlllIIlIIlllIIIllllllllllllllllllllllzo
4.1 Boop Sensor (APDS-9960)ccccccriiiriiiiirirrrrrsssssssssssssssssssss s s sss nnnnes 20
4.2 MAX9814 MICrOPRONEc s ssss s sss s s ss s s s ss e s s s e s s e e e s snennenenenesnnnnnnes 20
L S 0 o1 {1 I =11 o) o 20
L | 0T 20
4.5 12C OLED DiSPIaY ...cetreriiiiiiirsssnnrrnnrssssssssssssnssnsssssssssssssssssssssssssssssssssnsssssssssssssssssnnssssssssssns 20

Page 2 of 28

5 Programming the Teensy IIIIIIIIIIIIIIIIIIIIIIIlllIlllIllllIlll21
5.1 Getting Started with ProtoTracer

... 21
5.1.1 Install AppliCatioNScccooeiiee e 21
5.1.2 InStall EXIENSIONS ... 21
5.1.3 Download the COAEDASEueiiiiiiiiiiiiiieee e e e e e e eeeeas 21

L7 o - T [4 T = TR0 o 41 o] = 22

5.3 Loading or Modifying an Animation ... 23

5.4 Controller EXamPIe s ssss s s s s s ss s ss s s s s s s s s s s s s s s s s e s e s e e e s e e e e e e e e e e e e e nennes 24

5.5 ANIMation EXamPIeo sss s sss s ss e s s e e s s e e e e e e e e e e e e e ennns 27

6 General Recommendations and Notescccceeeeeeee. 28

Page 3 of 28

1 Wiring Your Protogen

1.1 Sensor Wiring Diagram

The following diagram details the connections for the MAX9814 microphone, the APDS-
9960 boop sensor, and the face control button. The power does not matter but the XT30
connections can only be inserted in one way. Power from the USB Buck Converter to
the breakout board, from the breakout board to the LED Panels. Do not bypass the
breakout board or it will not provide power to the Teensy.

Button (Ho Polarity)

GND 3V3 19 #18

GND 3VU3 19 18

[y
N
N
N
=2
(Te]
=2
{Te]
o
=
™
™
=
(v
[=]
4
o
[m]
=z
o

R1
g
o
R2
R3
g
R
R4

+5V
GND 3VU3 19 18

Page 4 of 28

1.2 Wiring Pictures

1.2.1 Connecting the Controller

s 'l""I"'I"" I' l“”'l””’ R T m

. : s ‘@

2 En

,‘; EIIIIIII:H 4

Page 5 of 28

1.2.2 Wiring the USB Power Source

1.2.3 Wiring the Boop Sensor

Page 6 of 28

1.2.4 Wiring the Microphone

D = N w &

0w

Page 7 of 28

1.2.6 Final Wiring

Page 8 of 28

2 HUB75 LED Panels

2.1 General Information

These LED boards use WS2812B-Mini serialized LEDs, these are glorified LED strips
and can be controlled with the same controller! Each board has 571 LEDs which need
to be controlled. This can be done through several means; | would recommend using
my ProtoTracer program which will ray trace a live 3D model of a Protogen face to the
LED panel in real time!

An alternative is to use FastLED with Arduino and manually define the pixels in order.

To increase the framerate the boards can be split in two with the perforation in the
middle.

2 SmartLED Shield and Breakout

3.1 General Information

The SmartLED Shield for the Teensy 4 is used as the backbone to this design, this
allows you to use open-source code to be easy to implement if you decide against using
ProtoTracer to display graphics on your Protogen!

The following information is pulled directly from their Crowd Supply page as a means of
maintaining a local copy incase they take the posting down:
https://www.crowdsupply.com/pixelmatix/smartled-shield-for-teensy-4

3.1.1 Easy-to-implement LED Graphics

SmartLED Shield enables the Teensy 4 to drive high-quality graphics to HUB75 RGB
LED panels, with 36-bit color and 240 Hz refresh rate across large panels (e.g. 128x64
pixels). A Teensy 4.0 or Teensy 4.1 with pins fits into the socket on the shield, and the
shield can attach directly to the HUB75 panel or through a ribbon cable. The
SmartMatrix library for Arduino makes it easy to draw basic graphics, create scrolling
and static text, draw beautiful patterns using FastLED, and play animated GIFs on the
panel. Example code is provided so you can get started as quickly as possible. The
Shield and library use special features and peripherals of the Teensy 4 processor to
send graphics data to your display with minimal CPU usage, so you can use the
processor to do other tasks in parallel such as SPI communication, file decoding, or
complex rendering.

Using SmartLED Shield with SmartMatrix library and the Teensy 4 is the easiest way to
drive high-quality and high pixel count graphics to RGB LED panels with a
microcontroller. Use a simple API to tell the library what to draw on the screen, and the
library takes care of refreshing in the background. Advanced features like these are
enabled automatically:

Page 9 of 28

https://www.crowdsupply.com/pixelmatix/smartled-shield-for-teensy-4

- 36-bit Color Refresh - See the full color range in the image or pattern you're
displaying, with no noticeable brightness steps when dimming pixels down to
black. Up to 48-bit color refresh is available.

- Color (Gamma) Correction - Your source graphics are probably 24-bit color, but
SmartMatrix library applies automatic color correction so they have good
contrast, smooth gradients, and don't look washed out.

- Global Brightness Control - When you don't need the full brightness of the LED
panel, lower the brightness without having to sacrifice color depth of your
graphics.

The shield is easy to assemble and connect to a panel, and there’s no soldering
required beyond adding pins to the Teensy. The Teensy is removable, so you can swap
between the 4.0 and 4.1 if you want. All long edge Teensy signals are brought out to
expansion rows for easy prototyping.

3.1.2 Features
- Ease-of-use:

(@)

(@)

SmartLED Shield is fully assembled. If your Teensy has pins, then no
soldering is required.

Teensy can easily be inserted into and removed from the shield.
SmartMatrix library for Arduino provides an easy development platform,
along with others such as FastLED.

Example code is included for a quick start.

- Flexibility:

O

Drives displays with up 9k pixels (e.g. 96 x 96) with high quality settings,
and even larger displays with reduced quality settings.

o Signals on the long edges of the Teensy are brought out to expansion
rows for easy prototyping.

o The 4-pin JST-SM connector may be used to provide power to the Teensy
separate from the USB connector.

o Optionally drive DotStar/APA102-compatible LEDs using the onboard 5
volt buffers and 4-pin JST-SM connector. Mating JST-SM cable is
included.

o Panels can be daisy-chained to make large, bright, high-resolution
displays.

o Drives all 14 signals on HUB75 panels using 5 volt buffered outputs, using
only 9 GPIO pins on the Teensy 4.0 or 4.1.

- Quality:
o Provides up to a 240 Hz refresh rate.

@)
@)

Up to 48-bit color refresh is available.
Color (gamma) correction, and global brightness control features allow for
a high level of visual quality control.

Page 10 of 28

3.1.3 HUB75 Panels

HUB75 RGB panels are typically used for LED billboards (e.g., Times Square), making
them cost-effective and readily available. They’re much cheaper per-pixel than
addressable LEDs, and available in a wide range of pixel pitch (as of now, 2 mm
spacing up to 10 mm spacing per LED). They do require an external controller to
continually send data to the panels to refresh them line by line, and that’s where the
SmartLED Shield and SmartMatrix library come in. Adafruit, Sparkfun, and other
distributors carry panels that are known to be compatible with SmartLED Shield and the
SmartMatrix library, but most panels on AliExpress and other sources are compatible as
well.

Note: HUB75 panels have a separate power connector and require an appropriate 5-
volt power supply. The SmartLED Shield does not provide power to the panel, only data
signals.

The pixel pitch and "RGB" are good search terms on Aliexpress, e.g. "P6 RGB" for a 6
mm pitch RGB HUB75 panel.

For the controller you should utilize boards with the 6124 chip to ensure
functionality. This is the only panel that | have tested this with, others should
work but will not be supported in software by default.

3.1.4 Teensy

Teensys are small, well-featured, low-cost microcontroller boards designed by PJRC.
Best of all, the boards have excellent development support and a large community.
They’re the perfect solution to build an LED board around.

SmartLED Shield works with two variants of Teensy 4, the 4.0 and 4.1, with the 4.1
being the higher-powered option. Teensy units are available for purchase along with
shields during the campaign. Please note that SmartLED Shield kits come with headers
required to mate your Teensy to the board, but if you buy a Teensy through the
campaign, you will need to solder the Teensy headers yourself. Units with pre-soldered
headers can be found on Sparkfun.

As stated on the PJRC website, these are the main differences between the two units:

Feature Teensy 4.1 Teensy 4.0
Ethernet 10/ 100 Mbit DP83825 -none-
PHY (6 pins)
USB Host 5 Pins with power 2 SMT Pads
management
SDIO (4-bit data) Micro SD Socket 8 SMT Pads
PWM Pins 35 31
Analog Inputs 18 14
Serial Ports 8 7
Flash Memory 8 Mbyte 2 Mbyte

Page 11 of 28

QSPI Memory 2 chips Plus Program Program memory only
Memory
Breadboard Friendly I/O 42 24
Bottom SMT Pad Signals 7 16
SD Card Signals 6 0
Total I/O Pins 55 40
3.1.5 Teensy Pin Usage
= w 2 ™~ wn L o w o caa &
fiz £z S| if iE [R5 i Rlis
=@ o N - -5 B =3 2=58
wE| = B ¢S s> BN iz | Fe D
% Fa] o n L
o
GND KN Vin (3.6 to 5.5 volts)
PWM CRX2 RX1 0 LA 1 GND
PWM CTX2 TX1 1 L 4 3.3V (250 mA max)
PAM—OYT———] 23 A9 CRX1 MCLK1 PWM
PAM LR ——— 3 122 A8 CTX1 PWM
IPWM BCLK2 apat02 4 J 21 A7 RX5 BCLK1
PWM IN2 PRIVE 5 20 A6 TX5 LRCLK1
Shearat; L 19 A5 SCLO PWM
PH—EH A~ fE—F 418 M SDAQ PWM
PWM IN1 TX2 8 2 17 A3 TX4 SDA1
OHHE 9 J 16 A2 RX4 SCL1
PAM—MOSR—ES—30 15 Al RX3 S/PDIFIN ~ PWM
P M ST 14 A0 TX3 SIPDIF OUT PWM
PHM—MOSE—HSO—12 [1 BHERSE—RE P

Used by Shield
Jumper Option: Swap Pins 7/8

[..l.l
(W]
=

The additional pins on the right — 14 to VIN - are used to provide the additional
functionality to the controller breakout.

Page 12 of 28

3.1.6 Documentation

SmartMatrix library 4 GitHub: htips://github.com/pixelmatix/SmartMatrix/

SmartLED Shield for Teensy 4 Documentation:
http://docs.pixelmatix.com/SmartMatrix/shield-t4.html

3.2 Controller Breakout
3.2.1 Information

The controller breakout provides sensor connectivity, power distribution, and indication

methods for power.

3.2.2 Schematic

BCKPWR VIN VIN VIN VN
— 1,1, 1.1
1 C1 c2 C3 C4
xrso?l—_ | 22uF | 22uF | 22uF | 22uF
GND = = = =
GND GND GND GND
LEDPWR
2 VI L
1 4 SDAO
| o =—scLo
XT30F — ol 2 Vs
GND -
GND
ne2
4 SDAO
Al : 3 SCLO
5l A0 ol V3
2 3V3 -
ol ___IT_
Header3 — GND
GND nc3
A2 4 SDAD
B Al : 3 SCLO
2 3V3 o % IV3
T ll e
Header3 — =
GND GND
Bl
q TIO20 juler]
1 p SDAO
] 3 SCLO
Header2 = 5 3V3
GND 1
B2
q TIO21 Header 4 —
1 GND
Header2 —
GND

R3
R4
3v3

470 TX4

470 R4

T1

60 =1 On LA da L bD =

10

12
13
14

Header 14

33
3v3
LEDI
o
5 RS 10K
33 ” “I'GND
LED2
o
VIN_R6,

. 10K ”

I“lGND

Page 13 of 28

https://github.com/pixelmatix/SmartMatrix/
http://docs.pixelmatix.com/SmartMatrix/shield-t4.html

3.2.3 Full PCB Design

Page 14 of 28

Pe®e ®®@®F

81° 61 ENE ONO 81 BT ENE AN 81,61 ENE ONO
¥3 €7 23°10

_II_Q Fal
©_I.L o F.L

Buttons

QRON)
@ @ o

=
3
=T
(=R 3
Se
—
- A
Em
18 [
=L
[F T ="=]

Pmn
&=
=
[0
(e
1=
1
ok
o
ol

61 8T ENEON9 ua 91 ENE'ON9 W0 ee@®@® ®e

@ cvcocsexn

Misc I0

€ ¢ :m NS ENE ENEANS ozw
SN -
3 i .

RO OOROROXOROROROROROIO

3.2.4 Top Layer PCB Design

3.2.5 Bottom Layer PCB Design

ORORCORCHENDRORORM Y

CQROR Y

O MOR}

@ ®
@@

POOEO®® D
@ cvcocscw

OROXCOJOROROROROROROXOXOI0

3.2.6 Top Overlay PCB Design

Page 15 of 28

DORONOR Y
81,61 £NE ONO
¥9 €7 22°1D

ORORQRC)
BT 61 ENEOND

81° 61 ENE ON9

'

Buttons

QRO

(=
FILENEONY 2> ™
0 >

P
:

|
3
2
[-F- 3
S+

f=|
-
ol np
Lm
M
= =
[==]

=2 aNo
61 81 ENEONS 21 ST ENE'OND

| BIEX [QICIK
soconcses @
€2 22 NS NS ENE ENEAND ON9

= ImOTE NCeT E
[e el Ll &

OROXCEOROROROROXOROJORORO0

=
—
=
et
1"
paem
=5
=
=

Misc

3.4 Controller Breakout Schematic Breakdown
3.4.1 16 Pin Header

Left:
P1
g TIO23
7 TI022
VIN
S
j V3
M
2 |
1 |
Header 8

X

Right Bottom:

I2C4

SDAD
SCLO
3V3

P Lad o

]

Header 4

5

Right Top:

RXTX1
R3

=
2 V3
S
Header4 —

GND

470 T4
470 R34

Page 16 of 28

3.4.5 Teensy 12C Headers

All four I2C headers are the same connections and can be used interchangeably

I2C1 1202
4 SDAD 4 SDAD
: 3 SCLO : T SCLO
3 r
o -’13 3V . .’iz 3V3
ol S
GND é;b
12C4
4 SDAD
: SCLO
5 3V3
'
Header4 —
GND
Built in pullups:
scLo BL - 3y3
10K
spag B2 3y3
10K
3.4.7 XT30 Power Input and Output
BCKPWR LEDPWR
2 VIN 2 VIN
1 1
1 |
XT30-F — XT30-F —
GND GND

I2C3

[IXT!

4 SDAD
3 SCLD
2 V3
1

L

GN

g

Page 17 of 28

3.4.8 Analog Headers

Al A2 Al
AD 3 v
3 3V3 2 V3
rn 1 |
'™ I
— Header 3 —
GND
3.4.9 Digital Headers
B2
Bl
,, TIO20 2 e, 1021
I — '™
w =
1 Header 2
GND

3.5 Indicators

There are two in-use visual indicators on the controller, the bottom LED in this image
indicates that the board’s 3.3V supply is powered. The top LED indicates that the
board’s 5V supply is powered.

GND3VU3 16 17 GND 3VU3 1
GND 3U3 19 18

GND GND3VU3 3U3 5V 5V

Page 18 of 28

Schematic view of LED wiring:

LED1

3vi RS 10K H “IIGND

S TWET S

3.6 Power Setup

3.6.1 Powering the Teensy 4.0 for Programming
For programming the Teensy 4.0, the bottom VIN from VUSB trace needs to be cut as
to not provide power to the LED boards and cause damage while programming:

PWM Cut to separate
VIN from VUSB,

if using battery
or external
power.

This is detailed in the top right corner of this diagram.

3.6.2 Powering the Controller for Usage
To use the controller, 5V must be provided to the XT30 connector, make sure you follow
the standards for the XT30 polarity!

Page 19 of 28

4 Sensors/Peripherals

4.1 Boop Sensor (APDS-9960)

The APDS-9960 is a Time-of-Flight sensor that uses an IR light to measure the distance
to the object in front of it using the 12C communication protocol. This can be connected
on either the Teensy 12C breakout or the ESP32 12C breakout. The following picture
shows the recommended location for the device:

4.2 MAX9814 Microphone

The MAX9814 electret microphone is a standard electret microphone with automatic
gain compensation via an amplifier. This will pick up a varying range of sounds and not
just your voice, so it is best to tune the software gain appropriately.

4.3 Control Button

The control button is a simple button that allows you to toggle between faces. There is
no analog filtering on the button with the kit as the button debouncing is handled in code
within the ButtonHandler class.

4.4 MPU6050

The MPUG050 is a motion processing unit that allows for reading from a 3-axis
accelerometer and a 3-axis gyroscope. These inputs can be read in over 12C with either
the Teensy or the ESP32 and be used to map and give more motion to the face.

4.5 12C OLED Display

The OLED display is a small display for mounting within the visor for the wearer to see,
it is used to display the current face being displayed on the outside, status of a battery,
or anything else you like. This will communicate over I12C with either the Teensy or the
ESP32.

Page 20 of 28

5 Programming the Teensy

5.1 Getting Started with ProtoTracer

5.1.1 Install Applications
Install Visual Studio Code from here: https://code.visualstudio.com/

Install TeensyDuino from here: https://www.pjrc.com/teensy/td_download.html

5.1.2 Install Extensions

Install PlatformlO IDE under the extensions in Visual Studio Code:

PlatformlO IDE) 1627ms
o Professional development en...
PlatformlO &2

Install C/C++ extension:
y C/C++) 218ms
C/C++ IntelliSense, debuggin...

i = i
Microsoft .ﬂ GE]

5.1.3 Download the Codebase
Download ProtoTracer from here: https://github.com/coelacant1/ProtoTracer You can
use either the Zip download or clone it to a local Git repository:

Go to file Add file ~ [l

(3 Clone
HTTPS 55H GitHub CLI

https://github.com/coelacantl/ProtoTracer. [lT

2] Open with GitHub Desktop

[¥) Download ZIP

Page 21 of 28

https://code.visualstudio.com/
https://www.pjrc.com/teensy/td_download.html
https://github.com/coelacant1/ProtoTracer

5.2 Loading a Controller

Depending on the status of the repository you will need to change the Main.cpp file in
your repository. Use the following Main.cpp to load for your Protogen Controller using
the SmartMatrixHUB75 controller:

CONTROLLERS
. #include "Controllers\SmartMatrixHUB75.h"

. const uint8_t maxBrightness = 20;
. Controller* controller = new SmartMatrixHUB75(maxBrightness);
Animation* animation = new ProtogenHUB75Animation();

VCoNOOTUVTh, WN PR

void setup() {
Serial.begin(115200);
Serial.println("\nStarting...");
controller->Initialize();

void loop() {
float ratio = (float)(millis() % 5000) / 5000.0f;
animation->UpdateTime(ratio);
controller->Render(animation->GetScene());

controller->Display();

Serial.print("Animated in ");
Serial.print(animation->GetAnimationTime(), 4);

Serial.print("s, Rendered in ");
Serial.print(controller->GetRenderTime(), 4);
Serial.println("s");

Page 22 of 28

5.3 Loading or Modifying an Animation

There are several previously created animations that you can load and modify into your
Protogen. The recommended pre-created file is the ProtogenHUB75Animation.h which
will work from the start with your included sensors. Alternative animations can be found
under the Animations folder:

“ SIC
~ Animation

Animation.h

ArtisansAnimation.h

BeeAnimation.h

Booth

CoelaBonkaAnimation.h

CoelaMerdAnimation.h

Crash.h

CreeperAnimation.h

CubeAnimation.h

DeltaruneAnimation.h
seAnimator.h

FoxAnimation.h

FullScreenAnimation.h

ImageSequence.h

KaiborgV1Animation.h

KeyFrame.h
KeyFrameTrack.h
MukudeFaceAnimation.h
PikachuAnimation.h
ProtoDREMorphaAnimation.h
ProtogenArtieckAnimation.h
ProtogenHUB75Animation.h

ProtogenKitFaceAnimation.h

The animation includes everything to import your 3D face file, set the coloring, time the
keyframes, map parameters to generators, listen for your inputs, and modify everything
that will then be passed to the controller to render to your displays.

Page 23 of 28

5.4 Controller Example

The following is an example controller that is used to import the cameras — which
include the location of each pixel — the transform specifying where the camera is and
which direction it is facing, as well as a list of the output pixels which stored the
rendered information. Here is the parent class you must use to define a controller:

#pragma once
#tinclude "..\Render\Camera.h"

class Controller {
private:
const float softStart = 3000000;//microseconds
long previousTime;
Camera** cameras;
uint8_t count = 0;
float renderTime = 0.0f;
uint8_t maxBrightness;
bool isOn = false;

VWoONOOUVSA WNERE

. protected:
uint8_t brightness;

Controller(Camera** cameras, uint8 t count, uint8_t maxBrightness){
this->cameras = cameras;
this->count = count;
this->maxBrightness = maxBrightness;
previousTime = micros();

}

. public:
void Render(Scene* scene){
previousTime = micros();

if (!isOn && previousTime < softStart){
brightness = map(previousTime, @, softStart, @, maxBrightness);

3

else if (!isOn){
brightness = maxBrightness;
isOn = true;

)

for (int 1 = 0; i < count; i++){
cameras[i]->Rasterize(scene);

}

renderTime = ((float)(micros() - previousTime)) / 1000000.60f;
}

virtual void Initialize() = ©0;
virtual void Display() = 0;

float GetRenderTime(){
return renderTime;

Page 24 of 28

This class requires you to override the Initialize and Display functions to specify how
your controller is set up and how it updates your display:

#include <Arduino.h>

//#include <MatrixHardware_Teensy3 ShieldV4.h> // SmartLED Shield for Teensy 3
(va4)

#include <MatrixHardware_Teensy4 ShieldV5.h> // SmartLED Shield for Teensy 4
(V5)

//#include <MatrixHardware_Teensy3_ShieldV1itoV3.h> // SmartMatrix Shield for Teensy
3 V1-v3

//#include <MatrixHardware_Teensy4 ShieldV4Adapter.h> // Teensy 4 Adapter attached to
SmartLED Shield for Teensy 3 (V4)

//#include <MatrixHardware ESP32 V@.h> // This file contains multiple
ESP32 hardware configurations, edit the file to define GPIOPINOUT (or add #define
GPIOPINOUT with a hardcoded number before this #include)

//#include "MatrixHardware_Custom.h" // Copy an existing
MatrixHardware file to your Sketch directory, rename, customize, and you can include it
like this

#include <SmartMatrix.h>

. #include "Controller.h"
. #include "Render/Camera.h"
. #include "Flash/PixelGroups/P3HUB75.h"

. #define COLOR_DEPTH 24 // Choose the color depth used for storing
pixels in the layers: 24 or 48 (24 is good for most sketches - If the sketch uses type
“rgb24° directly, COLOR_DEPTH must be 24)

. const uintl6_t kMatrixWidth = 64; // Set to the width of your display, must be a
multiple of 8

. const uintlée_t kMatrixHeight = 64; // Set to the height of your display

. const uint8_t kRefreshDepth = 12; // Tradeoff of color quality vs refresh rate,
max brightness, and RAM usage. 36 typically good, drop down to 24 if you need
to. On Teensy, multiples of 3, up to 48: 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36,
39, 42, 45, 48. On ESP32: 24, 36, 48

. const uint8 t kDmaBufferRows = 4; // known working: 2-4, use 2 to save RAM, more
to keep from dropping frames and automatically lowering refresh rate. (This isn't used
on ESP32, leave as default)

. const uint8 t kPanelType = SM_PANELTYPE_HUB75_32ROW_MOD16SCAN; // Choose the
configuration that matches your panels. See more details in MatrixCommonHub?75.h and
the docs: https://github.com/pixelmatix/SmartMatrix/wiki

. const uint32_t kMatrixOptions = (SM_HUB75_OPTIONS_NONE); // see docs for
options: https://github.com/pixelmatix/SmartMatrix/wiki

. const uint8_t kBackgroundLayerOptions = (SM_BACKGROUND_OPTIONS_NONE);

. SMARTMATRIX_ALLOCATE_BUFFERS(matrix, kMatrixWidth, kMatrixHeight, kRefreshDepth,
kDmaBufferRows, kPanelType, kMatrixOptions);

. SMARTMATRIX_ ALLOCATE_BACKGROUND_LAYER(backgroundLayer, kMatrixWidth, kMatrixHeight,
COLOR_DEPTH, kBackgroundLayerOptions);

. class SmartMatrixHUB75 : public Controller {
. private:
CameralLayout cameralLayout = CameralLayout(CameralLayout::ZForward,
Cameralayout: :YUp);

Transform camTransform = Transform(Vector3D(), Vector3D(0, 0, -500.0f), Vector3D(1,
1, 1));

PixelGroup camPixels = PixelGroup(P3HUB75, 2048);

Page 25 of 28

Camera cam = Camera(&camTransform, &cameralLayout, &camPixels);
Camera* cameras[1] = { &cam };

. public:
SmartMatrixHUB75(uint8_t maxBrightness) : Controller(cameras, 1, maxBrightness){}

void Initialize() override{
matrix.addLayer(&backgroundLayer);
matrix.begin();

matrix.setBrightness(255);
matrix.setRefreshRate(249);

backgroundLayer.swapBuffers();//for ESP32 - first is ignored
}

void Display() override {
for (int i = 0; i < 2048; i++){
if (camPixels.GetPixel(i)->Color.R == @ && camPixels.GetPixel(i)->Color.G
== @ && camPixels.GetPixel(i)->Color.B == 0){
camPixels.GetPixel(i)->Color = camPixels.GetPixel(i)-
>Color.Scale(brightness).Add(16);

}
¥

for (uintle_t y = 0; y < 32; y++) {
for (uintl6_t x = @; x < 64; x++){
uintl6_t pixelNum = y * 64 + Xx;

rgb24 rgbColor = rgb24((uintl6_t)camPixels.GetPixel(pixelNum)->Color.R,
(uint16_t)camPixels.GetPixel(pixelNum)->Color.G,
(uintl6_t)camPixels.GetPixel(pixelNum)->Color.B);

backgroundLayer.drawPixel(x, y, rgbColor);
backgroundLayer.drawPixel(63 - x, y + 32, rgbColor);

}

backgroundLayer.swapBuffers();

Page 26 of 28

5.5 Animation Example
The following is an example controller which loads in a cube with a depth material and
rotates in space based on the animation completion ratio input to the Update function:

#pragma once

#include "Animation.h"

#include "..\Objects\Cube.h"

#include "..\Materials\DepthMaterial.h"
#include "..\Materials\LightMaterial.h"
#include "..\Math\FunctionGenerator.h"

class CubeAnimation : public Animation{
. private:
Cube cube;
DepthMaterial dMat = DepthMaterial(DepthMaterial::Z, 100.0f, 600.0f);
LightMaterial 1Mat = LightMaterial();
FunctionGenerator fGenRotation = FunctionGenerator(FunctionGenerator::Sine, -
360.0f, 360.0f, 6.0f);
FunctionGenerator fGenScale = FunctionGenerator(FunctionGenerator::Sine, 0.25f,
0.75f, 4.0f);

. public:
CubeAnimation() : Animation(1) {
scene->AddObject(cube.GetObject());

cube.GetObject()->SetMaterial (&dMat);
}

void FadeIn(float stepRatio) override {}
void FadeOut(float stepRatio) override {}

void Update(float ratio) override {
float x = fGenRotation.Update();
float sx = fGenScale.Update();

Quaternion rotation = Rotation(EulerAngles(Vector3D(x, ratio * 720.0f, 0),
EulerConstants: :EulerOrderXzYS)).GetQuaternion();

cube.GetObject()->ResetVertices();
cube.GetObject()->GetTransform()->SetRotation(rotation);
cube.GetObject()->GetTransform()->SetScale(Vector3D(sx, sXx, sX));
cube.GetObject()->GetTransform()->SetPosition(Vector3D(125.0f, 75.0f, 600.0f));

cube.GetObject()->UpdateTransform();

Page 27 of 28

6 General Recommendations and Notes

Do not use external power to the XT30 connector, unless it is 5V directly, the controller
should be able to handle 4.5V to 5.5V but anything else is outside of specification.

Do not short circuit the 10 pins. Be careful about which pins are in use and are listed at
the beginning of the guide.

Be careful leaving the electronics in a humid environment.

If you have a faulty device, please contact me before attempting repairs. Repairs are
easy with the proper equipment but without this equipment you could cause more
damage.

Page 28 of 28

	1 Wiring Your Protogen
	1.1 Sensor Wiring Diagram
	1.2 Wiring Pictures
	1.2.1 Connecting the Controller
	1.2.2 Wiring the USB Power Source
	1.2.3 Wiring the Boop Sensor
	1.2.4 Wiring the Microphone
	1.2.5 Wiring the Control Button
	1.2.6 Final Wiring

	2 HUB75 LED Panels
	2.1 General Information

	2 SmartLED Shield and Breakout
	3.1 General Information
	3.1.1 Easy-to-implement LED Graphics
	3.1.2 Features
	3.1.3 HUB75 Panels
	3.1.4 Teensy
	3.1.5 Teensy Pin Usage
	3.1.6 Documentation

	3.2 Controller Breakout
	3.2.1 Information
	3.2.2 Schematic
	3.2.3 Full PCB Design
	3.2.4 Top Layer PCB Design
	3.2.5 Bottom Layer PCB Design
	3.2.6 Top Overlay PCB Design

	3.4 Controller Breakout Schematic Breakdown
	3.4.1 16 Pin Header
	3.4.5 Teensy I2C Headers
	3.4.7 XT30 Power Input and Output
	3.4.8 Analog Headers
	3.4.9 Digital Headers

	3.5 Indicators
	3.6 Power Setup
	3.6.1 Powering the Teensy 4.0 for Programming
	3.6.2 Powering the Controller for Usage

	4 Sensors/Peripherals
	4.1 Boop Sensor (APDS-9960)
	4.2 MAX9814 Microphone
	4.3 Control Button
	4.4 MPU6050
	4.5 I2C OLED Display

	5 Programming the Teensy
	5.1 Getting Started with ProtoTracer
	5.1.1 Install Applications
	5.1.2 Install Extensions
	5.1.3 Download the Codebase

	5.2 Loading a Controller
	5.3 Loading or Modifying an Animation
	5.4 Controller Example
	5.5 Animation Example

	6 General Recommendations and Notes

